
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

2 - 9 Power series
Where does the power series converge uniformly? 

3. 
n=0

∞ 1

3n

n
(z + ⅈ)2 n

Clear["Global`*⋆"]

By theorem 1, p. 699, a power series in powers of z-− z0 converges uniformly in the closed 
disk z-− z0| ≤ r, where  r < R and R is is the radius of convergence of the series. In other 
words, look for the radius of convergence.

Series
1

3n

n
(z + ⅈ)2 n, {n, ⅈ, 4};

The power series is in terms of Z=(z+ⅈ)2, and has the form ∑n=0
∞ anZ n with coefficients 

1
3n . So

an = 3-−n

3-−n

an+1 = 3-−(n+1)

3-−1-−n

and
an
an+1
3

Since the power of the power term is 2n, the radius of convergence R is
31/∕2

3

The disk of uniform convergence is less than R, so a δ must be allowed so that |z+ⅈ|≤ 
3 -δ, with δ>0.

5. 
n=2

∞

Binomial[n, 2] (4 z + 2 ⅈ)n

Clear["Global`*⋆"]



The form of the series can be changed to

SumBinomial[n, 2] 4n z +
ⅈ

2

n

, {n, 2, 8}

16
ⅈ

2
+ z

2

+ 192
ⅈ

2
+ z

3

+ 1536
ⅈ

2
+ z

4

+ 10240
ⅈ

2
+ z

5

+

61 440
ⅈ

2
+ z

6

+ 344064
ⅈ

2
+ z

7

+ 1 835008
ⅈ

2
+ z

8

And to find the general sequence of coefficients,
FindSequenceFunction[{16, 192, 1536, 10240, 61440, 344064, 1 835008}, n]

21+2 n n (1 + n)

Reaching back to get the Cauchy-Hadamard criterion, I can find the raw radius,

LimitAbs
21+2 n n (1 + n)

23+2 n (n + 1) (2 + n)
, n → ∞

1

4

And to convert the raw radius to the actual radius of convergence, I apply the 1/n factor of 
the power term,
1

4

1/∕1

1

4

As the radius of convergence is R= 1
4 , I now need r such that r+δ= 1

4 , where δ>0 and 

Abs[z+ ⅈ
2  ≤ r.

7. 
n=1

∞ n!

n2
z +

ⅈ

2

n

Clear["Global`*⋆"]

I see that the Maclaurin series does not converge, but the Taylor series does,

Sum
n!

n2
z +

ⅈ

2

n

, {n, 1, 8}

ⅈ

2
+ z +

1

2

ⅈ

2
+ z

2

+
2

3

ⅈ

2
+ z

3

+
3

2

ⅈ

2
+ z

4

+

24

5

ⅈ

2
+ z

5

+ 20
ⅈ

2
+ z

6

+
720

7

ⅈ

2
+ z

7

+ 630
ⅈ

2
+ z

8
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The z and n parts of the series are already set up nicely. I can try to find the coefficients,

FindSequenceFunction1,
1

2
,
2

3
,
3

2
,
24

5
, 20,

720

7
, 630, n

Pochhammer[1, -−1 + n]

n

FullSimplify[%]
Gamma[n]

n

Using the Cauchy-Hadamard criterion, I can try to find the radius,

LimitAbs
Gamma[n]

n

n + 1

Gamma[n + 1]
, n → ∞

0

The radius of convergence is zero. The disk of uniform convergence must be strictly less 
than the radius of convergence, which is impossible. Therefore the series is uniformly 
convergent nowhere.

9. 
n=1

∞ (-−1)n

2n n2
(z -− 2 ⅈ)n

Clear["Global`*⋆"]

The Maclaurin series does not converge, but the Taylor series does,

Sum
(-−1)n

2n n2
(z -− 2 ⅈ)n, {n, 1, 10}

1

2
(2 ⅈ -− z) +

1

16
(-−2 ⅈ + z)2 -−

1

72
(-−2 ⅈ + z)3 +

1

256
(-−2 ⅈ + z)4 -−

1

800
(-−2 ⅈ + z)5 +

(-−2 ⅈ + z)6

2304
-−

(-−2 ⅈ + z)7

6272
+

(-−2 ⅈ + z)8

16 384
-−

(-−2 ⅈ + z)9

41 472
+

(-−2 ⅈ + z)10

102 400

The sign needs to be adjusted on the first term in order to match the others. The z and n 
parts of the series seem neat and orderly. I can try to find the coefficients,

FindSequenceFunction

-−
1

2
,

1

16
, -−

1

72
,

1

256
, -−

1

800
,

1

2304
, -−

1

6272
,

1

16384
, n

-− 1
2

n

n2

Using the Cauchy - Hadamard criterion, I can try to find the radius,
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LimitAbs
-− 1

2

n

n2
(n + 1)2

-− 1
2

n+1

, n → ∞

2

And to convert the raw radius to the actual radius of convergence, I apply the 1/n factor of 
the power term,
21/∕1

2

As the radius of convergence is R=2, I now need r such that r+δ=2, where δ>0 and 
Abs[z-2 ⅈ] ≤ r.

10 - 17 Uniform convergence
Prove that the series converges uniformly in the indicated region.

11. 
n=1

∞ zn

n2
, Abs[z] ≤ 1

Clear["Global`*⋆"]

SumConvergence
zn

n2
, n

Abs[z] ≤ 1

Mathematica indicates the region of convergence, which is exactly the region I am inter-
ested in. (However, since I want to enforce r and not R, I don’t think I can do it on the 
response by Mathematica.) The Weierstrass M-test is very easy to apply in this case. For the 
domain of interest, for any zn with z from that domain, 
zn

n2
≤

1

n2
(*⋆ for all positive n∈ℕ *⋆)

And the series 1n2 can be used as the Weierstrass comparison series. Example 4 on p. 682 

remarks that the series 1n2  converges. Therefore by the Weierstrass M-test, the problem 

series converges uniformly in the indicated region.

13. 
n=1

∞ Sin[Abs[z]]n

n2
, all z

Clear["Global`*⋆"]

This problem is very similar to the last. The numerator of the function must either equal 1 
or be less than 1, for all z. In either case 
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This problem is very similar to the last. The numerator of the function must either equal 1 
or be less than 1, for all z. In either case 
Sin[Abs[z]]n

n2
≤

1

n2
(*⋆ for all positive n∈ℕ *⋆)

And again the series 1n2 can be used as the Weierstrass comparison series. Example 4 on p. 

682 remarks that the series 1n2  converges. Therefore by the Weierstrass M - test, the series 

converges uniformly in the indicated region.

15. 
n=0

∞ (n!)2

(2 n)!
zn , Abs[z] ≤ 3

Clear["Global`*⋆"]

SumConvergence
(n!)2

(2 n)!
zn, n

Abs[z] < 4

Mathematica tells me that the radius of convergence, R, is equal to 4. Therefore, since the 
problem series is a power series, the radius of uniform convergence, r, is anything smaller 
than R. As 3 is certainly less than 4, the series converges uniformly in the indicated region.

17. 
n=1

∞ πn

n4
z2 n , Abs[z] ≤ 0.56

Clear["Global`*⋆"]

ver =
πn

n4
z2 n

πn z2 n

n4

ver1 = ver /∕. z → 0.56; ver2 = ver /∕. z → 0.1; ver3 = ver /∕. z → 0.0;
ver4 = ver /∕. z → -−0.1; ver5 = ver /∕. z → -−0.56;
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TableFormTablen, NumberForm[ver1, 3], NumberForm[ver2, 3],
ver3, NumberForm[ver4, 3], NumberForm[ver5, 3],
NumberFormN1  n2, 3, {n, 1, 10}, TableHeadings → {},

"", "z→0.56", "z→0.1", "z→0.0", "z→-−0.1", "z→-−0.56", "N[1/∕n2]"

z→0.56 z→0.1 z→0.0 z→-−0.1 z→-−0.56 N[1
1 0.985 0.0314 0. 0.0314 0.985 1.
2 0.0607 0.0000617 0. 0.0000617 0.0607 0.25
3 0.0118 3.83 × 10-−7 0. 3.83 × 10-−7 0.0118 0.111
4 0.00368 3.81 × 10-−9 0. 3.81 × 10-−9 0.00368 0.0625
5 0.00149 4.9 × 10-−11 0. 4.9 × 10-−11 0.00149 0.04
6 0.000706 7.42 × 10-−13 0. 7.42 × 10-−13 0.000706 0.0278
7 0.000375 1.26 × 10-−14 0. 1.26 × 10-−14 0.000375 0.0204
8 0.000217 2.32 × 10-−16 0. 2.32 × 10-−16 0.000217 0.0156
9 0.000133 4.54 × 10-−18 0. 4.54 × 10-−18 0.000133 0.0123
10 0.0000862 9.36 × 10-−20 0. 9.36 × 10-−20 0.0000862 0.01

The familiar series 1n2 can be used as the Weierstrass comparison series. Example 4 on p. 

682 remarks that the series 1n2  converges. Using this series, the Weierstrass M - test demon-

strates convincingly that the series 
πn

n4
z2 n <

1

n2

by use of a sequence of successive values, with difference gap opening on increasing n, and 
that it therefore converges uniformly in the indicated region. (Note: I wanted to use Solve 
or Reduce to make a better case, but neither was able to come through with something 
useful.)
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